
https://doi.org/10.1002/nav.10029


A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 2

was pointed out that the choice of the problem representation is crucial for the success of a GA.

According a more recent study (cf. Hartmann and Kolisch [13]), the activity list based GA ranges

among best heuristics currently available for the RCPSP. In fact, for medium and large sized

project instances, it is the most promising one. This paper is a follow-up study that proposes a

new RCPSP heuristic which builds upon the activity list based GA of [11]. We now examine the

impact of the so-called decoding procedure which transforms the problem representation into a

solution (in our case, schedule). As we will see, there are two algorithms that can be employed as

decoding procedures. The idea is to leave the choice between them to the GA. Generally speaking,

we obtain a GA in which an algorithmic component (the decoding procedure) is selected by means

of evolution. The result is an extended GA paradigm which allows the GA to adapt itself. Hence,

we call it self-adapting GA.

The basic framework for the self-adapting GA was developed in Hartmann [12]. Another general

approach called adaptive GA was introduced by Derigs et al. [9] (but not yet applied to the RCPSP).

The latter considers di�erent crossover, mutation, and selection operators. A mechanism based on

a so-called scoreboard evaluates the success of the alternative operators dynamically. The main

di�erences between this adaptive GA and our self-adapting GA are as follows: First, our self-

adapting GA applies the same genetic operators and survival-of-the-�ttest strategy to both the

problem solution and the information related to self-adaptation (i.e., we do not have to employ a

separate mechanism like the scoreboard). Second, in our application to the RCPSP, we use self-

adaptation for selecting the decoding procedure rather than for the genetic operators (although,

as we will point out later on, our approach can deal with di�erent genetic operators as well).

The remainder is organized as follows: We begin with a description of the RCPSP in Section 2.

Subsequently, the self-adapting GA approach is presented in Section 3. Section 4 then summarizes

the results of our computational investigation. We analyze the behavior of the self-adapting GA

and compare it to the plain activity list based GA without self-adaptation. Moreover, we compare

it to several project scheduling heuristics from the literature. The paper closes with a general

discussion of the proposed approach as well as a few remarks on research perspectives in Section

5.

2 The Resource-Constrained Project Scheduling Problem

The classical resource-constrained project scheduling problem (RCPSP) can be summarized as

follows. We consider a project which consists of J activities (jobs) labeled j = 1; : : : ; J . The set of

activities is referred to as J = f 1; : : : ; J g. Due to technological requirements, there are precedence

relations between some of the jobs. These precedence relations are given by sets of immediate

predecessors Pj indicating that an activity j may not be started before all of its predecessors are

completed. Analogously, Sj is the set of the immediate successors of activity j . The precedence





A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 4

the earliest precedence and resource feasible start time. In fact, in Hartmann [11] it is shown that

the activity list representation (together with the serial SGS as decoding procedure) leads to better

results than other representations for the RCPSP.

In the context of priority rule based heuristics, another scheduling algorithm for the RCPSP, the

so-called parallel SGS, has been employed (cf. Kolisch [18]). It works as follows: Having scheduled

the dummy sink activity at time 0, the parallel SGS computes a so-called decision point which

is the time at which an activity to be scheduled is started. This decision point is determined by

earliest �nish time of the activities currently in process. For each decision point, the set of eligible

activities is computed as the set of those activities that can be feasibly started at the decision

point. The eligible activities are selected successively and started until none are left. Then the

next decision point and a related set of eligible activities are computed. This is repeated until all

activities are feasibly scheduled.

To the best of our knowledge, all metaheuristics in the RCPSP literature that employ the

activity list representation also make use of the serial SGS as decoding procedure (see Baar et

al. [1], Boctor [4], Bouleimen and Lecocq [5], Hartmann [11], and Pinson et al. [29]). Usually,

no reason for the selection of the serial SGS is given|the serial SGS appears to be the \natural

choice."

We propose to use not only the serial but also the parallel SGS as decoding procedure for the

activity list representation. In fact, the parallel SGS can easily be applied to activity lists: In each



ASelf-AdaptingGeneticAlgorithmforProjectSchedulingunderResourceConstraints 5

theSGStypeleadingtobetterresultswillsurvivewhiletheotheronewillprobablydieoverthe

generations.Thusthemechanismofevolutiondecidesforthespeci�cinstancecurrentlytobe

solvedwhichdecodingprocedureisthemorepromisingone.ThisenablestheGAtoadaptitself

dynamicallytoeachinstance,leadingtowhatwecallaself-adaptingGA.

3.3InitialPopulation

Next,wehavetode�nehowtodetermineaninitialpopulationcontaining POP individualsofthe

genotypeintroducedabove.Wewillproceedintwosteps.First,wewillconsidertheconstruction

ofanactivitylist.Second,wewilldescribetheselectionofthedecodingproceduretobeused,i.e.,

oneofthetwoSGS.

Anactivitylistisconstructedbyamodi�edpriorityrulebasedsamplingheuristic(cf.Kolisch

[18]).Thenextactivityforthelistissuccessivelychosenfromthoseunscheduledactivitiesthe

predecessorsofwhichhavealreadybeenselectedforthelist.Thisway,weobtainaprecedence

feasibleactivitylist.Thedecisionwhichactivityischosennextismadeonthebasisofoneoftwo

well-knownpriorityrules.We�rstselectthepriorityrule;eithertheLFT(latest�nishtime)or

theLST(lateststarttime)ruleischosenwithaprobabilityof0.5each.Fromtheresultingpriority

valuesoftheactivities,wederiveregretbasedbiasedselectionprobabilitiesthatareusedtoselect

thenextactivity(fordetailsonthepriorityrulesandtheregretbasedbiasedsamplingapproach,

werefertoKolisch[18]).Usingtwogoodpriorityrulesandarandomizedactivityselectionmethod

leadstoadiversi�edinitialpopulationofgoodactivitylists.

Next,wehavetochooseanSGSinordertomakethecurrentactivitylistacompletegenotype.

Ofcourse,bothSGSmustappearinthepopulationbecausewewantthegeneticalgorithmto

decidewhichofthemismorepromising.Weexaminedthefollowingthreealternativeapproaches:

(a)ThemoststraightforwardmethodistoselecteachoftheSGStypeswithaprobabilityof

p =0 : 5.



A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 6

technique presented by Reeves [31] for permutation based genotypes. Our approach also secures

that precedence feasibility is maintained. We perform a two-point crossover for which we draw two

random integers q1 and q2 with 1 �



A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 7

population. The next step now is to select the individuals that survive and make up the next

generation.

We have tested several variants of the selection operator which follow a survival-of-the-�ttest

strategy. We considered the ranking method, the proportional selection as well as the tournament

selection (cf., e.g., Michalewicz [25]). In preliminary computational studies, we observed that the

ranking method gave better results than the other alternatives. This is in line with the �ndings of

our previous study (Hartmann [11]). Therefore, we �xed the selection component to the ranking

approach. The ranking method sorts the individuals with respect to their �tness values and selects

the POP best ones while the remaining ones are deleted from the population (ties are broken

arbitrarily).

3.7 Dealing with Clones

Crossover (together with mutation) may produce children that are copies of individuals that already

exist in the population. These identical individuals are called clones. Often, clones are considered

to be worth avoiding because computational e�ort is wasted by computing solutions (in our case,

schedules) that had been computed before. Moreover, clones reduce the genetic variety in the

population. On the other hand, one might argue that the occurence of clones means that more

copies of �t information are available for reproduction.

In the self-adapting GA, we analyzed the number of clones occuring during the evolution. In

case of small search spaces (i.e., test sets with small projects), we had at most 6% clones during

the evolution. The average fraction of clones was less than 2%. For large search spaces, we hardly

observed any clone. Hence, we decided not to include a speci�c mechanism to avoid clones. It

should be noted, however, that for very long computation times, which allow to explore a huge

number of individuals, avoiding clones can by promising.

3.8 Acceleration

We have implemented two methods to speed up the self-adapting GA. They are both based on the

relaxation of the resource constraints.

The �rst approach has similarly been used by Kolisch [17]. It can be summarized as follows:

We compute a lower bound on the makespan which is given by the earliest possible project end

that would be obtained from relaxing the resource constraints. If we have found a schedule with a

makespan equal to the lower bound, we have found an optimal solution and stop the GA.

The second method makes use of the worst upper bound Z on the makespan that occurs in

the current population. Proceeding from this upper bound Z , we determine the so-called latest

start time LS j for each activity j 2 J . LS j reects the latest time at which activity j must start

to allow the project to be completed in period Z when the resource constraints are relaxed. If,

while computing the schedule for a new child individual, an activity j is assigned a start time

sj � LS j , we can stop the scheduling process for this individual and remove it from the population

immediately. Clearly, the latter situation would lead to a schedule with a makespan Z 0 � Z . That

is, it would be removed from the population by means of the ranking selection anyway. By not

completely computing a schedule for some individual, we save computation time.

4 Computational Results

4.1 Test Design

In this section we present the results of the computational studies. The experiments have been

performed on a Pentium-based IBM-compatible personal computer with 133 MHz clock-pulse and

32 MB RAM. The self-adapting GA for the RCPSP has been coded in ANSI C, compiled with the

GNU C compiler, and tested under Linux.



A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 8

We have performed experiments with two di�erent designs. First, we have taken three standard

sets of RCPSP instances from the literature which were constructed by the project generator Pro-

Gen of Kolisch et al. [22]. These instance sets are available from the web-based project scheduling

problem library PSPLIB (cf. Kolisch and Sprecher [21]). The �rst two sets contain 480 instances

with 30 and 60 activities per project, respectively. The third one consists of 600 instances with

120 activities. The self-adapting GA computed 1000 schedules for each project (with parameter

settings POP = 40, GEN = 25) and, in an additional run, not more than 5000 schedules (with

POP = 90, GEN = 55). This test design allowed us to compare our results with those obtained

for several RCPSP heuristics from the literature which were tested for the evaluation study of

Hartmann and Kolisch [13]. In that study, also 1000 and 5000 schedules were computed by each

heuristic for each instance. This allows to evaluate the heuristics both in a short term and in a

medium term optimization. The authors of the heuristics tested their approaches themselves such

that they were able to adjust the parameters in order to obtain the best possible results. As the

computational e�ort for constructing one schedule can be assumed to be similar in all of the tested

heuristics, this test design should allow for a fair comparison.

The second experimental design uses the well-known instance set assembled by Patterson [28].

It contains 110 RCPSP instances with up to 51 activities. This instance set enabled us to compare

the self-adapting GA with some heuristics for which no results for the ProGen set were available.

We report the results of the respective heuristics given in the literature by the authors of the

approaches. Here, however, the number of schedules computed for each instance was not equal

(and the results were obtained on di�erent computers and with di�erent computation times). As

a basis for the comparison, we therefore selected a time limit of 5 seconds per instance for the

self-adapting GA.

4.2 Comparison with other Heuristics for the RCPSP

The results of our experimental study on the ProGen instance sets are summarized in Tables 1{

3. They compare the self-adapting GA with several RCPSP heuristics from the literature. The

metaheuristics considered here are the schedule scheme based tabu search method of Baar et al. [1],

the activity list based simulated annealing approach of Bouleimen and Lecocq [5], the three GAs

of Hartmann [11] based on di�erent representations, and the problem space based GA of Leon

and Ramamoorthy [24]. The tested priority rule based sampling methods include the adaptive

procedure of Kolisch and Drexl [19], the latest �nish time (LFT) rule based method of Kolisch

[18], and the adaptive approach of Schirmer [33]. The LFT based sampling method was tested

separately with the serial and the parallel SGS.

Table 1 gives the average percentage deviations from the optimal makespan for the ProGen

instance set with 30 activities in a project obtained from the evaluation of 1000 and 5000 schedules,

respectively. As for the ProGen instance sets with 60 and 120 activities per project some of the

optimal solutions are not known, we measured for these sets the average percentage deviation

from a lower bound. As lower bound, we chose the critical path based lower bound (cf. Stinson

et al. [35]). As this bound can be easily computed, this allows other researchers to compare their

results with those reported here. The lower bound based results for the instances with 60 and

120 activities can be found in Tables 2 and 3, respectively. In each table, the heuristics are sorted

according to descending performance with respect to 5000 iterations.

For the self-adapting GA, Table 4 additionally displays the average percentage deviation from

the best lower bounds currently known. The results show that the solution gap is rather small. The

underlying lower bounds have been computed by Brucker and Knust [7], Heilmann and Schwindt

[14] as well as Klein and Scholl [16]. The bounds are frequently updated in the library PSPLIB

of Kolisch and Sprecher [21] (the results of Table 4 are based on the bounds reported there in

October 2000).

Finally, the results for the classical Patterson instances are provided in Table 5. In addition to

the self-adapting GA, it includes the two-phase heuristic of Bell and Han [2], the extended random



A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 9

Iterations

Algorithm reference 1000 5000

self-adapting GA (new) 0.38 0.22
simulated annealing Bouleimen, Lecocq [5] 0.38 0.23
activity list GA Hartmann [11] 0.54 0.25
adaptive sampling Schirmer [33] 0.65 0.44
tabu search Baar et al. [1] 0.86 0.44
adaptive sampling Kolisch, Drexl [19] 0.74 0.52
serial sampling (LFT) Kolisch [18] 0.83 0.53
random key GA Hartmann [11] 1.03 0.56
priority rule GA Hartmann [11] 1.38 1.12
parallel sampling (LFT) Kolisch [18] 1.40 1.29
problem space GA Leon, Ramamoorthy [24] 2.08 1.59

Table 1: Average deviations (%) from optimal makespan | ProGen set J = 30

Iterations

Algorithm reference 1000 5000

self-adapting GA (new) 12.21 11.70
activity list GA Hartmann [11] 12.68 11.89
simulated annealing Bouleimen, Lecocq [5] 12.75 11.90
adaptive sampling Schirmer [33] 12.94 12.59
priority rule GA Hartmann [11] 13.30 12.74
adaptive sampling Kolisch, Drexl [19] 13.51 13.06
parallel sampling (LFT) Kolisch [18] 13.59 13.23
random key GA Hartmann [11] 14.68 13.32
tabu search Baar et al. [1] 13.80 13.48
problem space GA Leon, Ramamoorthy [24] 14.33 13.49
serial sampling (LFT) Kolisch [18] 13.96 13.53

Table 2: Average deviations (%) from critical path lower bound | ProGen set J = 60

Iterations

Algorithm reference 1000 5000

self-adapting GA (new) 37.19 35.39
activity list GA Hartmann [11] 39.37 36.74
simulated annealing Bouleimen, Lecocq [5] 42.81 37.68
priority rule GA Hartmann [11] 39.93 38.49
adaptive sampling Schirmer [33] 39.85 38.70
parallel sampling (LFT) Kolisch [18] 39.60 38.75
adaptive sampling Kolisch, Drexl [19] 41.37 40.45
problem space GA Leon, Ramamoorthy [24] 42.91 40.69
serial sampling (LFT) Kolisch [18] 42.84 41.84
random key GA Hartmann [11] 45.82 42.25

Table 3: Average deviations (%) from critical path lower bound | ProGen set J = 120



A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 10

Iterations

Algorithm ProGen set 1000 5000

self-adapting GA J = 60 3.26 2.88
J = 120 9.69 8.33

Table 4: Average deviations (%) from best lower bound currently known

Algorithm reference average dev. optimal CPU-sec

self-adapting GA (new) 0.00% 100.0% 5:0a

GA Hartmann [11] 0.00% 100.0% 5:0a

simulated annealing Cho, Kim [8] 0.14% 93.6% 18:4b

simulated annealing Lee, Kim [23] 0.57% 82.7% 17:0b

problem space GA Leon, Ramamoorthy [24] 0.74% 75.5% 7:5c

LCBA •Ozdamar, Ulusoy [27] 1.14% 63.6% 0{25d

local search Sampson, Weiss [32] 1.98% 55.5% 10:2b

tabu search Thomas, Salhi [36] 2.30% 46.4% 218:7e

two-phase method Bell, Han [2] 2.60% 44.5% 28:4f

a maximal CPU-time on a Pentium 133 MHz
baverage CPU-time on a Pentium 60 MHz
caverage CPU-time on an IBM RS 6000
dCPU-time range on an IBM PC 486
eaverage CPU-time on a Sun Sparc Station 10
f average CPU-time on a Macintosh plus

Table 5: Comparison of heuristics | Patterson instance set

key based simulating annealing method of Cho and Kim [8], the activity list based GA of Hartmann
[11], the random key based simulating annealing method of Lee and Kim [23], the problem space
based GA of Leon and Ramamoorthy [24], the local constraint based analysis (LCBA) approach
of •Ozdamar and Ulusoy [27], the local search procedure of Sampson and Weiss [32], and the tabu
search method of Thomas and Salhi [36]. We give the average percentage deviation from the optimal
makespan, the percentage of instances for which an optimal schedule was found, and information
about the computation time and the computer that was used for testing. The procedures are
sorted according to increasing deviation from the optimum.

The results show that the new self-adapting algorithm leads to the best results on all instance
sets, outperforming several heuristics from the literature. This makes it the most promising heuris-
tic to solve the RCPSP. For all instances of the Patterson instance set, an optimal solution is found
within at most 5 seconds of CPU time (this also holds for the activity list based GA of Hartmann
[11]).

Observe that metaheuristics typically give better results than priority rule based methods.
This is due to the fact that metaheuristics usually exploit knowledge from one or more previously
examined solutions whereas priority rule based procedures generate each solution independently.
It should be emphasized, however, that using a metaheuristic strategy alone does not guarantee a
good performance. This can be seen from the di�erent results of the tested GA approaches.

Let us now return to the di�erence in the behavior of the two SGS that motivated the de�nition
of the genotype of the self-adapting GA. Consider the sampling method based on the LFT priority
rule. It was tested in two variants, that is, separately with the serial and the parallel SGS. As
the only di�erence lies in the SGS, the computational results show the impact of the choice of the



A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 11

Iterations

test set 1000 5000

J = 30 0.30 1.40

J = 60 0.57 2.52

J = 120 3.13 14.05

Table 6: Average computation times of the self-adapting GA (sec)

Generation 1 2 5 10 15 20 25 30 35 40 45 50

RS = 0:2 50 30 18 18 19 20 20 20 21 21 21 21

RS = 0:5 50 39 35 36 36 34 34 35 36 37 38 39

RS = 0:7 50 44 56 64 67 67 67 67 67 67 67 67

Table 7: Average fraction (%) of the serial SGS over the generations (J = 60)

SGS. On the average, the serial SGS performs better on the ProGen set with 30 activities while

the parallel SGS becomes superior on the set with 120 activities. This demonstrates that instance

characteristics inuence the performance. These results indicate that it is a promising approach

to include both SGS into a GA and let the genetic operators select the more successful one|as

done in our self-adapting GA.

4.3 Computation Times

Let us now take a brief look at the computation times. Table 6 lists the average computation

times for the three ProGen sets of test instances, both for constructing 1000 and 5000 schedules.



A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 12

SGS RS = 0:2 RS = 0:5 RS = 0:7 overall

serial 24% 58% 67% 49%

parallel 76% 42% 33% 51%

Table 8: SGS in the best solution found w.r.t. resource strength (J = 60)

serial SGS decreases over the �rst generations and then increases again. Clearly, the GA always

selects the more successful SGS. This shows that the parallel SGS is useful at an early stage of the

search because it is well suited for quickly �nding schedules of good average quality. In contrast,

the serial SGS is the better choice for getting closer to the optimum. Thus, the advantage of the

parallel SGS is exploited in the beginning of the evolution while using the serial SGS pays in a

later phase.

So far, we have examined how often the two SGS types occur in the population. Next, we

study how often the SGS types are contained in the best solution found for each project instance.

Considering again the instance set with J = 60, Table 8 shows the distribution of the SGS among

the best solutions found. On the average, approximately half of the best solutions contain the

serial SGS while the other half contain the parallel SGS. Again, however, the resource strength

RS of a project instance has an impact on the SGS selection. Table 8 shows that in case of scarce

resources (i.e., a low resource strength), the parallel SGS leads to more best solutions than the

serial one. In case of more resource capacities, the best solutions contain the serial SGS more often

than the parallel one.

Summing up, the mechanism of self-adaptation is capable of exploiting the bene�ts of both SGS

during the genetic search. In particular, it is able to adapt the selection of the decoding procedure

to the resource scarceness of a project.

5 Conclusions

In this paper, we have presented a new genetic algorithm based heuristic for the classical resource-

constrained project scheduling problem. The computational experiments on a large set of standard

test instances have shown that the proposed heuristic leads to better results than several heuristics

from the literature.

But we have not only obtained a promising heuristic for the RCPSP. The proposed self-adapting

GA can be viewed as a powerful and general framework to tackle di�cult optimization problems.

When designing a classical GA for some optimization problem, one would do a lot of experiments

using test instances in order to �nd the best con�guration of the GA. However, this might lead to



A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 13

� Some component might be better suited for longer computation times whereas an alternative

one is superior for short-term optimization.

� Some component may perform well in the �rst generations of the GA (which is usually

characterized by a rough search not yet close to the optimum) while an alternative one is

favorable for the later generations.

These disadvantages associated with the design process of a classical GA are avoided in our self-

adapting GA. We suggest to let the GA decide which component or parameter setting is promising.

In this paper, we have demonstrated the bene�t of self-adaptation for the choice among alternative

decoding procedures. But it should be emphasized that self-adaptation can also deal with, e.g.,

alternative crossover strategies. One simply has to integrate all promising components that can be

used within the GA. The evolution can make use of additional genes in order to decide which of

them are the best. That is, the evolution leads to a good solution for the problem and to a good

algorithm to solve the problem at the same time. In other words, the best algorithmic variant is



A Self-Adapting Genetic Algorithm for Project Scheduling under Resource Constraints 14

[18] R. Kolisch. Serial and parallel resource-constrained
project scheduling methods revisited: Theory and
computation. European Journal of Operational Re-
search, 90:320{333, 1996.

[19] R. Kolisch and A. Drexl. Adaptive search for solving
hard project scheduling problems. Naval Research
Logistics , 43:23{40, 1996.

[20] R. Kolisch and S. Hartmann. Heuristic algorithms
for solving the resource-constrained project schedul-
ing problem: Classi�cation and computational anal-
ysis. In J. Weglarz, editor, Project scheduling:
Recent models, algorithms and applications , pages
147{178. Kluwer Academic Publishers, 1999.

[21] R. Kolisch and A. Sprecher. PSPLIB { a project
scheduling problem library. European Journal of
Operational Research , 96:205{216, 1996.

[22] R. Kolisch, A. Sprecher, and A. Drexl. Characteri-
zation and generation of a general class of resource-
constrained project scheduling problems. Manage-
ment Science, 41:1693{1703, 1995.

[23] J.-K. Lee and Y.-D. Kim. Search heuristics for
resource-constrained project scheduling. Journal of
the Operational Research Society , 47:678{689, 1996.

[24] V. J. Leon and B. Ramamoorthy. Strength and
adaptability of problem-space based neighborhoods
for resource-constrained scheduling. OR Spektrum ,
17:173{182, 1995.

[25] Z. Michalewicz. Heuristic methods for evolution-
ary computation techniques. Journal of Heuristics ,
1:177{206, 1995.

[26] L. •Ozdamar and G. Ulusoy. A survey on the
resource-constrained project scheduling problem.
IIE Transactions , 27:574{586, 1995.

[27] L. •Ozdamar and G. Ulusoy. An iterative local
constraint based analysis for solving the resource-
constrained project scheduling problem. Journal of
Operations Management , 14:193{208, 1996.

[28] J. H. Patterson. A comparison of exact ap-
proaches for solving the multiple constrained re-
source, project scheduling problem. Management
Science, 30:854{867, 1984.

[29] E. Pinson, C. Prins, and F. Rullier. Using tabu
search for solving the resource-constrained project
scheduling problem. In Proceedings of the fourth
international workshop on project management and
scheduling, pages 102{106. Leuven, Belgium, 1994.

[30] A. A. B. Pritsker, L. J. Watters, and P. M. Wolfe.
Multiproject scheduling with limited resources: A
zero-one programming approach. Management Sci-
ence, 16:93{107, 1969.

[31] C. R. Reeves. Genetic algorithms and combinatorial
optimization. In V. J. Rayward-Smith, editor, Ap-
plications of modern heuristic methods , pages 111{
125. Alfred Waller Ltd., Henley-on-Thames, 1995.

[32] S. E. Sampson and E. N. Weiss. Local search
techniques for the generalized resource-constrained
project scheduling problem. Naval Research Logis-
tics , 40:665{675, 1993.

[33] A. Schirmer. Case-based reasoning and improved
adaptive search for project scheduling. Naval Re-
search Logistics , 47:201{222, 2000.

[34] A. Sprecher, R. Kolisch, and A. Drexl. Semi-active,
active and non-delay schedules for the resource-
constrained project scheduling problem.


	Introduction
	The Resource-Constrained Project Scheduling Problem
	Self-Adapting Genetic Algorithm
	Basic Scheme
	Representation and Self-Adaptation
	Initial Population
	Crossover
	Mutation
	Construction of the next Generation
	Dealing with Clones
	Acceleration

	Computational Results
	Test Design
	Comparison with other Heuristics for the RCPSP
	Computation Times
	Behavior of the Self-Adapting Genetic Algorithm

	Conclusions

